Effect of Local Search on the Performance of Genetic Algorithm
نویسندگان
چکیده
Genetic Algorithms are biologically inspired optimization algorithms that has been used in a number of NP-hard optimization problems successfully like Travelling salesman, Knapsack problem etc. Performance of genetic algorithms largely depends on type of genetic operators Selection, Crossover, Mutation and Replacement used in it. Replacement operator decides which individuals stay in a population and which are replaced by removing or replacing some offspring or parent individuals. Genetic algorithms mainly lead to the premature convergence that makes them incapable of finding global optimal solution. A hybrid algorithm is an extension of genetic algorithm that incorporates the local search techniques within genetic operations so as to prevent the premature convergence. In this paper author is analyzing the effect of hybridization of local search with replacement operators on the performance of genetic algorithm. Implementation is carried out using MATLAB code on test problem Benchmark Dejong's Rastrigin Function (F4). The graphs clearly show that the hybrid algorithm is converging towards optima more quickly than the conventional algorithm. Keywords— Genetic algorithm, hybridization, Genetic and local search algorithm, Dejong function,
منابع مشابه
مدل حل مبتنی بر جستجوگر محلی ژنتیک برای مساله زمان بندی استقرار کارگاهی تعمیم یافته با زمانهای عملیات قابل کنترل
Although incorporating complexities and flexibilities of real world manufacturing systems into classic scheduling problems results in problems with greater complexity, it has immense theoretical and practical importance due to its impressive effect on system performance. In this research, three basic assumptions of a job shop scheduling problem have been revised to develop a model with three ty...
متن کاملA Hybrid Unconscious Search Algorithm for Mixed-model Assembly Line Balancing Problem with SDST, Parallel Workstation and Learning Effect
Due to the variety of products, simultaneous production of different models has an important role in production systems. Moreover, considering the realistic constraints in designing production lines attracted a lot of attentions in recent researches. Since the assembly line balancing problem is NP-hard, efficient methods are needed to solve this kind of problems. In this study, a new hybrid met...
متن کاملA Hybrid Algorithm using Firefly, Genetic, and Local Search Algorithms
In this paper, a hybrid multi-objective algorithm consisting of features of genetic and firefly algorithms is presented. The algorithm starts with a set of fireflies (particles) that are randomly distributed in the solution space; these particles converge to the optimal solution of the problem during the evolutionary stages. Then, a local search plan is presented and implemented for searching s...
متن کاملOPTIMIZATION OF SKELETAL STRUCTURES USING IMPROVED GENETIC ALGORITHM BASED ON PROPOSED SAMPLING SEARCH SPACE IDEA
In this article, by Partitioning of designing space, optimization speed is tried to be increased by GA. To this end, designing space search is done in two steps which are global search and local search. To achieve this goal, according to meshing in FEM, firstly, the list of sections is divided to specific subsets. Then, intermediate member of each subset, as representative of subset, is defined...
متن کاملA new memetic algorithm for mitigating tandem automated guided vehicle system partitioning problem
Automated Guided Vehicle System (AGVS) provides the flexibility and automation demanded by Flexible Manufacturing System (FMS). However, with the growing concern on responsible management of resource use, it is crucial to manage these vehicles in an efficient way in order reduces travel time and controls conflicts and congestions. This paper presents the development process of a new Memetic Alg...
متن کاملتعیین ماشینهای بردار پشتیبان بهینه در طبقهبندی تصاویر فرا طیفی بر مبنای الگوریتم ژنتیک
Hyper spectral remote sensing imagery, due to its rich source of spectral information provides an efficient tool for ground classifications in complex geographical areas with similar classes. Referring to robustness of Support Vector Machines (SVMs) in high dimensional space, they are efficient tool for classification of hyper spectral imagery. However, there are two optimization issues which s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014